
1

Automated Specification Centered Testing

Mats Heimdahl (PI)
Critical Systems Research Group (CriSys), University of Minnesota

Willem Visser (Co-PI)
Research Institute for Advanced Computer Science (RIACS)
NASA Ames Research Center

Sanjai Rayadurgam (Research Assistant)

Mike Whalen (Today’s Speaker)
Critical Systems Research Group (CriSys),University of Minnesota



2

Goal: Develop a specification-centered testing framework 
to automatically generate test cases for critical systems

Key Innovation:
• Use model-checker as test-case generation engine
• Test generation techniques independent of the software 

artifact (requirements, design model, code)

Challenges:
• Identify a collection of test data coverage criteria for 

formal, state-based specifications
• Determine a suitable translation and abstraction from a 

formal specification to the input language of a model 
checker

• Obtain concrete test-cases from abstract models
• Augment specification-based tests with test cases 

generated from implementation to enhance coverage

NASA Relevance:
• Increased quality and productivity of mission-critical 

software

Accomplishments to date:
• A framework for test-generation using model-checkers
• A set of criteria to drive test-case generation
• Domain abstraction techniques for software models
• Experiments on small models from avionics domain

Description

Requirements
Specification Model

(RSML-e)

Test Criteria
(coverage criteria)

Implementation
(Java)

Model of
Environment

Model Checker
(SMV or SPIN)

Model Checker
(Java Pathfinder)

Instantiator
(Constraint Solver

Inverse Abstraction)

LTL/CTL
Properties

Counter
Example

Specification
Based Test
Sequence

Implementation
Based Test
Sequence

Model
Abstraction

Model Extraction and
Abstraction

Schedule:
• Investigate applicability to larger requirement models of 

flight control logic (Fall 2002)
• Java Pathfinder model-checker enhancements for test-

generation from code (Summer-Fall 2002)
• Approaches to instantiate test-cases with concrete data 

(Fall-Spring 2003)
• Minimizing test-suite size for a given set of criteria 

(Spring-Summer 2003)
• Evaluation and Wrap-up (Fall 2003)

Automated SpecificationAutomated Specification--Centered TestingCentered Testing
Mats P.E. Mats P.E. Heimdahl Heimdahl (University of Minnesota)(University of Minnesota), Willem , Willem Visser Visser (NASA Ames Research Center)(NASA Ames Research Center)



3

Control Systems Workbench

Specification

Visualization Prototyping

TestingAnalysis

Prototype Code



4

Specification Centered Testing

Comparison
(Requirements

Serve as Oracle)

Requirements Execution
Environment

(Nimbus)

Implementation-Based
Structural Tests

Required Output

Actual Output
Implementation Execution

Environment
(JVM)

Requirements
Specification Model

(RSML-e)

Implementation
(Java)

Functional Tests

Specification-Based
Structural Tests

1

2

3

SE Artifact Tool Generated
Artifact

Legend:



5

Specification Centered Testing

Comparison
(Requirements

Serve as Oracle)

Requirements Execution
Environment

(Nimbus)

Implementation-Based
Structural Tests

Required Output

Actual Output
Implementation Execution

Environment
(JVM)

Requirements
Specification Model

(RSML-e)

Implementation
(Java)

Functional Tests

Specification-Based
Structural Tests

1

2

3

SE Artifact Tool Generated
Artifact

Legend:



6

Generating the Tests

Requirements
Specification Model

(RSML-e)

Test Criteria
(coverage criteria)

Implementation
(Java)

Model of
Environment

Model Checker
(SMV or Java

Pathfinder)

Model Checker
(Java Pathfinder)

Instantiator
(Constraint Solver

Inverse Abstraction)

LTL/CTL
Properties

Counter
Example

Specification-Based
Test Sequence

Implementation-Based
Test Sequence

Model
Abstraction

Model Extraction and
Abstraction



7

Generating the Tests

Requirements
Specification Model

(RSML-e)

Test Criteria
(coverage criteria)

Implementation
(Java)

Model of
Environment

Model Checker
(SMV or Java

Pathfinder)

Model Checker
(Java Pathfinder)

Instantiator
(Constraint Solver

Inverse Abstraction)

LTL/CTL
Properties

Counter
Example

Specification-Based
Test Sequence

Implementation-Based
Test Sequence

Model
Abstraction

Model Extraction and
Abstraction



8

Progress …

• Past year …
� Formalism for generating test-cases from state-based 

specifications [ECBS 01/HASE 01]

� Test criteria in terms of temporal logic [ECBS 01]

� Framework for specification-centered testing [ICSE ATV 01]

� Domain abstraction for software specifications [FSE 01]

• Ongoing …
� Case-studies to investigate

� Coverage obtained on implementations by test-cases obtained 
from specification

� Scalability of the approach to large models

� Test cases from code using JPF



9

Some preliminary results

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 Translated

Statement

Branch

• A case-study on a small avionics model (ASW)
� RSML-e specification translated to NuSMV
� Condition coverage criteria expressed in LTL
� Generated 49 test cases (out of 78 properties)
� Varying coverage of implementations in Java (produced by students)
� Coverage metrics obtained using a Java coverage tool JCover*

* Thanks to Man-Machine Systems for providing the tool free for our research project



10

• Two critical questions
� Can we do this on large models?

� Approach being evaluated on models of flight-control logic from 
Rockwell Collins

� Can we do this on code?
� JPF is being used currently to generate test-cases from code obtained by 

translating RSML-e models

� Results from first case-studies indicate a positive answer to both.

• Other issues of interest:
� Instrumenting Nimbus to support coverage metrics
� Instantiating test-cases with concrete data values
� Environment specification for generating realistic test cases
� Determining pass/fail status for test cases
� Minimizing test suite size

Issues to be tackled… 


